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Steady finite amplitude two-dimensional solutions are obtained for the problem of 
convection in a horizontal fluid layer heated from below and rotating about its 
vertical axis. Rigid boundaries with prescribed constant temperatures are assumed 
and the solutions are obtained numerically by the Galerkin method. The existence of 
steady subcrit,ical finite amplitude solutions is demonstrated for Prandtl numbers 
P < 1.  A stability analysis of the finite amplitude solutions is performed by super- 
imposing arbitrary three-dimensional disturbances. A strong reduction in the domain 
of stable rolls occurs as the rotation rate is increased. The reduction is most pro- 
nounced at  low Prandtl numbers. The numerical analysis confirms the small amplitude 
results of Kiippers & Lortz (1969) that all two-dimensional solutions become unstable 
when the dimensionless rotation rate R exceeds a value of about 27 at P II 00. A brief 
discussion is given of the three-dimensional time-dependent forms of convection which 
are realized at  rotation rates exceeding the critical value. 

1. Introduction 
The calculation of finite amplitude convection in a layer heated from below has 

become a favoured problem of numerical computation in fluid mechanics ever since the 
first high-speed electronic computers became available. The steady two-dimensional 
solution of the basic equations represents a physically realistic form of convection 
for a fairly wide range of parameters in contrast to other problems of hydrodynamic 
instability which, in general, are time dependent and lead to a three-dimensional 
form of turbulence. That two-dimensional numerical solutions of convection can be 
readily obtained must not detract from the fact that various forms of three-dimen- 
sional convection are often realized, especially a t  higher Rayleigh numbers. Since 
three-dimensional numerical computations are still too expensive as a routine method 
for the analysis of convection, the much less expensive analysis of the stability of 
two-dimensional convection with respect to three-dimensional disturbances is of 
particular importance. 

In  rotating as well as non-rotating convection layers, steady two-dimensional rolls 
represent the preferred form of convection a t  Rayleigh numbers close to the critical 
value according to the small amplitude theories of Schliiter, Lortz & Busse (1965) 
and Kiippers & Lortz (1969). The familiar hexagonal cells appear only if deviations 
from the Boussinesq approximation are taken into account (see, for example, Busse, 
1967a) which will not be considered in this paper. The transition to three-dimensional 
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forms of convection at higher Rayleigh numbers occurs in general in the form of an 
instability with disturbances growing from infinitesimal amplitudes. Thus the spatial 
structure of the three-dimensional form of convection can usually be inferred from the 
form of the strongest-growing disturbance determined by the linear stability analysis 
of the stationary convection rolls. In addition, the oscillatory or monotonic time 
dependence of the disturbance determines the nature of the time dependence of the 
ultimately realized three-dimensional form of convection. 

The close correspondence between the strongest growing disturbances and the experi- 
mentally realized form of three-dimensional convection has first been demonstrated in 
the case of bimodal convection (Busse & Whitehead 197 1) .  The laboratory observations 
confirmed essentially all aspects of the earlier stability analysis of Busse (19674.  Since 
then a similarly close correspondence between theoretical results and experimental 
observations has been found in the case of oscillatory convection (Busse 1972; Clever 
& Busse 1974) and in the cases of the knot instability (Busse & Clever 1979a) and the 
wavy instability of convection rolls in an inclined layer (Hart 1971; Clever & Busse 
1977). 

The present paper is a sequel to those mentioned in that the analysis by Clever & 
Busse (1974) of instabilities of convection rolls in a horizontal layer is extended to the 
case when the layer is rotating about a vertical axis. The stability analysis for a 
rotating system is of special interest because three-dimensional forms of convection 
appear to be more predominant than in a non-rotating system and the nature of the 
three-dimensional convection patterns observed in experiments has not yet been 
clearly understood. In  the three major experimental studies of convection in a rotating 
system that have been published in the literature (Rossby 1969; Koschmieder 1967; 
Krishnamurti 197 l),  a transition from two-dimensional roll-like convection to 
three-dimensional cellular convection was observed and attributed to a variety 
of causes, for instance, the effect of the circulation induced by the centrifugal force 
or the instability found by Kuppers & Lortz (1969). Because little quantitative 
data were obtained, it is difficult to separate different mechanisms. One of the 
goals of the comprehensive stability analysis given in this paper is to provide 
a framework for the interpretation of future experimental observations. 

The instability discovered by Kuppers & Lortz (1969) is one of the most interesting 
phenomena of hydrodynamic stability theory. For low values of the Taylor number 
Kuppers & Lortz found in agreement with the results of Schluter et al. (1965) in 
the non-rotating case that, among all possible three-dimensional patterns of con- 
vection, only convection in the form of two-dimensional rolls represents a stable 
solution of the basic equations near the critical value of the Rayleigh number. But, 
for Taylor numbers T exceeding the critical value T,  = 2285, convection rolls become 
unstable and no stable stationary solution for convection is available. Since oscillatory 
motions are precluded in the limit of infinite Prandtl number which was assumed by 
Kuppers & Lortz, the question of the physically realized convection flow represents 
an enigmatic problem. A recent study of the problem has reached the conclusion that 
the realized form of convection in the presence of the Kuppers-Lortz instability is 
governed by the level of experimental noise (Busse & Clever 1978b). 

The original work of Kuppers & Lortz, who had assumed stress-free boundary 
conditions, has been extended by Kuppers (1970) to the case of finite Prandtl numbers 
and rigid boundaries. Except for variations of the value of T, with the Prandtl 
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number, the results remained essentially unchanged. For the comparison with 
experiments, it  seems necessary to analyse the Kiippers-Lortz instability for 
Rayleigh numbers outside the neighbourhood of the critical value since observations 
at  low amplitudes of convection are difficult to make. The present paper accomplishes 
this task. Although the method of analysis is quite different from that used by Kuppers 
(1970), the results agree well in the common domain of validity at  small convection 
amplitudes. 

The paper starts with the formulation of the basic equation and an outline of the 
numerical analysis for the case of the steady solution, as well as for the subsequent 
stability investigation with respect to arbitrary three-dimensional disturbances. In  
most respects the analysis follows that of Busse (1967b) and Clever & Busse (1974). 
The latter paper will be referred to as CB. The numerical results for steady two- 
dimensional convection are discussed in $3.  The results of the stability analysis 
described in § 4 represent by far the major part of the computational effort. A general 
discussion and some more speculative thoughts are given in $5. 

2. Mathematical formulation of the problem 
2.1. Basic equations 

We consider a horizontal layer of fluid contained between two rigid, perfectly con- 
ducting boundaries separated by the distance d. The constant temperatures TI and 
T, are prescribed at the upper and lower boundaries. The layer is rotating about a 
vertical axis with the rate CID. We assume that the centrifugal force is negligible in 
comparison with gravity. Thus the problem retains the properties of isotropy and 
homogeneity with respect to the horizontal dimensions of the non-rotating case. The 
analysis is based on the Boussinesq approximation of the equations of motion and 
the heat conduction equation. Using d, d 2 / K  and (T, - T,)/R as scales for length, time 
and temperature, respectively, the dimensionless equations for the velocity vector v 
and the deviation 6 of the temperature from the static distribution can be written in 
the form 

~ 2 ~ + ~ e - - v r - - 2 m ~ V = ~ - l  v VV+-V , (2 . la )  

v . v = o  (2.lb) 

(2 . lc)  

( *  a a , )  
a 
at 

v20 -+ RA . v = v . ve + - e. and 

The physical parameters of the problem are expressed in terms of three dimensionless 
numbers 

R = yg(T2 - TI) d 3 / K V ,  a = a, d 2 / v  and P = V/K, 

called the Rayleigh number, rotation parameter, and Prandtl number, respectively; 
v is the kinematic viscosity, K is the thermal diffusivity, y is the coefficient of thermal 
expansion and g is the acceleration of gravity. The unit vector A is directed opposite 
to gravity and VI' includes all terms that can be written in the form of a gradient. 

In  order to eliminate the equation of continuity (2 . lb )  from the problem, the 
following general representation for a solenoidal vector field is introduced : 

v = Sq5+.$-, 
21-I 
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where the operators 6 and E are defined by 
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64 = V x  (VxAq5) and e$ = V x A $ .  

By operating with A.V x (V x and A . V  x on equation ( 2 . 1 ~ )  and by rewriting 
equation (2 . lc ) ,  the following system of three equations for the unknown scalar fields 
4, $, and 8 is obtained: 

V4A2 4 - A2 8- 2QazA2 $ = P- l (S .  [(Sqi +e$) . V(69 +€$)I + at V2A2 $); ( 2 . 2 ~ )  

(2.2b) 

(2.2c) 

a 

a 
V2A2 $ + 2QazA2 9 = P-l (e . [(S$ +e$) . V(69 +€$)I + %A2 $1; 

a 
at 

v2e-RA2$ = (t i$+e$).ve+-e; 

where a,$ denotes the partial derivative of 4 with respect to the z co-ordinate in the 
direction of A and A2 is the Laplacian with respect to the horizontal co-ordinates x 
and y. 

Assuming the origin of the Cartesian system of co-ordinates in the centre of the 
layer, the conditions at  the rigid boundaries can be expressed in the form 

$ = a z $ = $ = 8 = o  at ~ = k + .  (2-3) 

The problem defined by equations (2.2) and boundary conditions (2.3) is considered 
in two special cases. First, steady two-dimensional solutions will be obtained as a 
function of R, Q, P ,  and the horizontal wavenumber a. In a second step, equations 
(2.2) will be solved for arbitrary infinitesimal three-dimensional disturbances super- 
imposed onto the steady solution. The domain in the parameter space for which all 
possible disturbances decay represents the region of physically realizable convection 
rolls. 

2.2. The steady problem 

Assuming that the variables 4, $, and 0 depend only on the y and z co-ordinates, 
equations (2.2) can be written in the form 

a,(v49 - 8 - 2Q a, $) = p-v; ,  9 %uzz 9 - a t u  9 a;,zz 9 + 8;s 9 %uuu 9 - a;u 9 a;uuz 91 (2.4a) 

and au(v2$ + 2Q 82 9) = p-ya;, 9 atu $ - a;, 9 qz $}, (2.4b) 

v2e - R a;u 6 = a;, 9 a, e - a;, 9 a, e. ( 2 . 4 ~ )  

These equations are solved numerically by using a Galerkin technique. Accordingly, 
#,$, and 8 are expanded in terms of orthogonal functions that satisfy the respective 
boundary conditions: 

9 = C aAveiAavg,(z) = C avh9Av;  ( 2 . 5 ~ )  
AV Av 

(2.5b) 

8 = c bAveiAaufv(z) = C bAveAv; ( 2 . 5 ~ )  
Au AV 

where the summation runs through all integers -CQ < h < CQ, 1 6 v < co. The 
functions f,(z) represent sin [vn(z + +)] and the functions g,(z) are given in Chandra- 
sekhar’s book (1961, p. 635) and are used in the same notation as in CB. 

In  order to compute the coefficients a,,, bhU, cAu it  is necessary to truncate the rep- 
resentations (2.5) at a sufficiently high level. As in the earlier work we choose the 
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truncation parameters N such that all coefficients with Ihl + v  > N are neglected. 
After substituting expansions (2.5) into (2.4), multiplying them by $ K p ,  $.KP, and eKI1, 
respectively, and averaging over the fluid layer a system of nonlinear algebraic 
equations is obtained for the unknowns aAv, b,,,, cA,, analogous to system (13) of CB. 
Because of the symmetry of the basic equations it is suficient to restrict the analysis 
to solutions that are symmetric in y and satisfy 

a,, = a_,,, b,,, = bWAv and c,,, = c-,,. (2.6) 
The computational effect can be reduced further by realizing that equations (2.4) 
admit a subset of solutions with the property 

(2.7) 1 $ky) = -4(-z,+-y), @,y)  = ---e(-v+-Y), 
t l r ( Z , Y )  = 34-29 n / a - y ) ,  

which implies that the coefficients a,,,, and b,,, vanish for odd values of h + v and the 
coefficients chv vanish for even values of h + v. We shall restrict the attention to this 
subset of solutions, which includes the solutions realized close to the critical value of 
the Rayleigh number. Solutions of (2.4) that do not satisfy properties (2.7) such as 
the solutions describing a double layer of convection rolls exist only at much higher 
values of the Rayleigh number than those of interest in this paper and are generally 
not of physical interest. 

Since the coefficients a,, and cov do not appear in (2.4) they can be neglected and 
the total number of unknown coefficients becomes PN2 for a given even value of the 
truncation parameter N .  The $N2 nonlinear algebraic equations are solved by a 
Newton-Raphson procedure. If reasonably close initial values are used, usually a 
solution for a lower value of the Rayleigh number, 5-10 iterates are sufficient to 
obtain a converged solution, As in CB, the truncation parameter N is chosen suffi- 
cently high such that the heat transport appears to approach within 1 yo of its asymp- 
totic value for N-+co. Because of the high derivatives involved in the heat transport, 
this criterion is especially sensitive to the convergence of the solution and has been 
found very satisfactory in the non-rotating case. According to the criterion, N = 10 
is required to obtain a good approximation in the case of the highest Rayleigh numbers 
considered and also in the low Prandtl number cases mentioned in 0 3. 

2.3. The stability analysis 
The equations for the field {$,$, cl> of infinitesimal disturbances is obtained by replacing 
4, $, and 0 in (2.2) by $+$, @+$, and e+8, respectively, and subtracting the 
equations for the steady solution {#, $, e}: 

V4A2 6- A2B- 2~28, A2$ = P-l 6 .  [(S$+E$). V(S4 +E$) ( 
a + ( ~ Q , + E $ )  .V(S6+.$)]+gtV2A2$); ( 2 . 8 ~ )  

V2A2$ + 2Q a, Az q3 = P-I { E . [(S$ + E$) . V(S$ + E$) 

a ~ 2 8 -  RA, 6 = (s$ +E$) . ve+ (64 +€$). vB+ ( 2 . 8 ~ )  
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Since the equations (2 .8 )  do not exhibit an explicit dependence on x and t and since 
the y-dependence is periodic, the general solution of the stability problem can be 
obtained as a sum of solutions which depend exponentially on x and t ,  and which 
have a y-dependence with the same period as the steady solution multiplied by a factor 
exp {idyl called the Floquet factor in the corresponding problem for ordinary differential 
equations: 

6 = ( Z 5," exALIggv(z)l exp {i(dy + bx) + d}; ( 2 . 9 ~ )  

$ = ( EAveiAa~fv(z)) exp {i(dy + bx) + at}; (2.9b) 

8 = ( C 6,vei*aYfv(z)) exp {i(dy + bx) + at}. ( 2 . 9 ~ )  

Since 4, I+&, and 8 satisfy the same boundary conditions as 4,  $, and 6,  respectively, 
the same expansion functions have been used for the z-dependence. As in the case 
of the steady problem, a system of algebraic equations is obtained by multiplying 
( 2 . 8 a )  by $r,lexp { - i(dy + bx) - at}, averaging it over the fluid layer and doing the 
analogous operations in the cases of (2 .8b )  and ( 2 . 8 ~ ) .  The resulting linear homo- 
geneous equations represent an eigenvalue problem with the eigenvalue a. Since the 
equations differ only by the addition of a few terms from equations (16) of CB, they 
are not given here explicitly. 

Because of the symmetry of the steady solution, the equations for the coefficients 
tirP, a,, with even K +p  and the equations for the coefficients 4, with odd K + p  separate 
from the equations for which K +p  has the opposite parity. Accordingly, instabilities 
with even K + ,u will be distinguished from those with odd K + p based on the symmetry 
of the coefficients a",, and a,,. The same truncation parameter N is used for the dis- 
turbance representation (2 .9)  as for the steady solution. 

To determine the domain of stability of the steady solution in the four-dimensional 
R, P, a, a space, the Rayleigh number is normally varied in small steps and the 
eigenvalue a with largest real part is computed at each step as a function of b and d. 
The Rayleigh number at  which the real part of this eigenvalue vanishes indicates the 
stability boundary. Usually the eigenvalues v depend smoothly on the parameters 
of the problem and accurate results can be obtained by interpolation from a fairly 
coarse grid of computed eigenvalues a. 

A, v 

A, V 

A, v 

3. The steady solution 
Most of the numerical computations of two-dimensional convection published in 

the literature have been carried out without consideration of the stability of the 
solution. Thus in many cases solutions have been obtained for values of the para- 
meters for which the two-dimensional solution is physically not realizable. This is 
particularly true in the case of a rotating layer, in which case the stability domain of 
convection rolls is much smaller than in the non-rotating case as the results of $ 4  
demonstrate. However, the computations of two-dimensional solutions are of interest 
beyond the range of stability of convection rolls, since they appear to exhibit some 
typical nonlinear properties of convection which experience little change when a 
transition to three-dimensional convection takes place. For example, the com- 
puted heat transport of two-dimensional convection in a non-rotating layer seems to 
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FIQURE 1. The critical Rayleigh number R, for the onset of steady convection as a function of 
the wavenumber a. The curves correspond (from top to bottom) to R = 50, 30, 20, 15, 10, 5 .  

agree reasonably well with the observed values of turbulent convection, although it is 
not clear whether this indicates a general property of convection or whether it is due 
to an accidental compensation between the effects of three-dimensionality and time 
dependence. 

As will be shown later, the Kuppers-Lortz instability is the primary cause of the 
restricted stability domain of two-dimensional convection in a rotating system. This 
instability seems to have only a slight effect on the heat transport and we have com- 
puted for this reason the heat transport for values of Q beyond the critical values of 
the Kuppers-Lortz instability. Wherever possible, agreement has been found with the 
more restricted previous calculations of Somerville (1971). In  all qualitative aspects 
the results also agree with those obtained by Veronis (1966, 1968) in the case of 
stress-free boundaries. 

The heat transport is usually shown in terms of the Nusselt number which describes 
the ratio between the heat transport with convection and what it would be without 
convection at  a given Rayleigh number. The curves seem to show a minimum of 
variation when plotted against R - R,, where R,(a, a) represents the critical value 
of the Rayleigh number for the onset of convection in the form of infinitesimal steady 
motions. In  figure 1 the function R,(a, Q) is plotted for various values of 0 in order 
to facilitate the use of the Nusselt number graphs. Since few results for the onset of 
oscillatory convection in the presence of rigid boundaries are available in the literature, 
the critical value R,(Q) for the oscillatory mode is given in figure 2. The corresponding 
wavenumbers a. and frequencies cri of the oscillatory mode are given in figures 3 and 
4, respectively. 
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FIGURE 3. The critical wavenumber of oscillatory convection 
as a function of Q for four different Prandtl numbers. 

The Coriolis force appears to have a constraining effect on steady convection beyond 
the well-known delay of the onset of convection which is evident in figures 1 and 2. 
The results given in figure 5 indicate a noticeable decrease of the heat transport for 
large values of SZ, at least for R - R, less than 5 x lo4. Beyond that value the Coriolis 
force enhances the heat transport at  a given value of R - R,. This effect is clearly 
evident in figure 6 where a typical rotating case is compared with the non-rotating 
results. There is no indication, however, that the heat transport in a rotating layer 
ever exceeds the heat transport in the non-rotating layer a t  given value of R in the 
case P > 1. The experimental results of Rossby (1969) which show just this effect 
in water must be either caused by some three-dimensional effect or by a change in 
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wavelength of convection rolls as Somerville (1971) and Somerville & Lipps ( 
have suggested. 

The Prandtl number dependence of the heat transport is shown in figure 7. 

973) 

It is 
clearly evident that the dependence is quite different in the regions P < 1 and P > 1.  
In some respects t,he heat transport varies in an opposite sense in rotating and in a 
non-rotating layer. While the heat transport in the non-rotating case increases mono- 
tonically with P for low values of R and exhibits a slight maximum at a Prandtl 
number of the order unity at  high values of R, the opposite behaviour is shown for 
values of Q larger than 30 in the range P > 0.1. For sufficiently low Prandtl number, 
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FIQURE 6. The Nusselt number as a function of Rayleigh number 
for two different values of R in the case P = 7, a = a,. 
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FIGURE 7. The Nusselt number as a function of the Prandtl number for diffc 
R-R,. R-R, = 104: (a) n = 0 ;  ( b )  n = 50. R-R, = 2x103:  ( c )  n = 
R = 50. 

)O 

cent values of !2 and 
0 ;  ( d )  R = 30; (e) 

the heat transport seems to decrease in every case, but the cost of computations for a 
converged solution increases strongly with decreasing P and the calculations have 
not been extended below P = 0.1 for this reason. 

The striking change of the dependence of the heat transport on R - R, for low 
Prandtl numbers is caused by the phenomenon of subcritical finite amplitude steady 
convection. We are using the word ‘subcritical’ here with respect to the onset of 
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R-R, 
FIGURE 8. The Nusselt number as a function of R - R, in the case of low Prandtl number P for 

a = a,. The solid and dashed curves correspond to R = 50 and R = 100, respectively. 

steady convection modes. It is evident from figure 2 that the onset of oscillatory 
convection occurs at a critical value R, of the Rayleigh number, which is lower than 
R, if the Prandtl number is sufficiently small. Within the parameter range where 
R, < R, finite amplitude steady convection does exist even for Rayleigh numbers less 
than R,. This property was found by Veronis (1968) in the case of stress-free boundaries 
for an intermediate range of rotation parameter Q. In the case of rigid boundaries, 
the occurrence of finite amplitude steady convection a t  Rayleigh numbers below those 
for the onset of oscillatory modes must be expected to be even more predominant since 
boundary conditions have a strongly inhibiting influence on oscillatory motions, 
while the critical Rayleigh number for steady convection is actually lower than for 
stress-free boundaries in the R-range of interest (Chandrasekhar 1961). Indeed, the 
case P = 0.1, Q = 50 shown in figure 8 is an example of steady convection at  Rayleigh 
numbers considerably below R,. The results for P = 0-3 and some others not shown 
in figure 8 indicate that the phenomenon of subcritical convection tends to disappear 
for high values of Q, a property also found by Veronis (1968) in the stress-free case. 
As in the latter case, subcritical finite amplitude steady convection seems to occur 
only for the Prandtl numbers less than unity. The observation by Rossby (1969) of 
subcritical finite amplitude convection in a rotating layer of water can thus not be 
explained in terms of two-dimensional convection. 

All results described so far have been obtained for convection rolls with the critical 
value a, of the wavenumber corresponding to the minimum of the curves shown in 
figure 1.  The variation of the heat transport with wavenumber is similar to that in a 
non-rotating layer if the Nusselt number is plotted as a function of a-a,. Figure 9 
shows the variation of the heat transport for R = 104 as an example. The stability 
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FIUURE 9. The Nusselt number as a function of the wavenumber for 
R = 0 (a) and = 50 ( b )  in the case R = lo4. 

results discussed below confirm the impression that the effect of the varying wave- 
number is similar to that in non-rotating case once the results have been expressed 
as a function of a - a,. 

4. Instabilities of steady convection rolls 
4.1. General discussion 

There are five known instability mechanisms that limit the stability domain of steady 
convection rolls in a non-rotating system. If the knot instability is counted as a 
mechanism distinct from the cross-roll instability, the number is six. From the physical 
point of view it is well justified to separate the two instabilities because of their 
different characteristic wavenumbers. But, from the mathematical point of view, the 
knot instability must be regarded as a modified form of the cross-roll instability. For 
a more detailed discussion the reader is referred to the latest paper on that subject 
by Busse & Clever (1979a).  Because of the analytical dependence of the problem on 
the rotation parameter Q, all instability mechanisms continue to operate in the case 
of steady convection rolls in a rotating system, at  least if 0 is sufficiently small. Thus 
the discussion can be shortened by referring to CB and other earlier papers. 

A new mechanism of instability occurring only in the case of a rotating layer has 
been discovered by Kuppers & Lortz (1969). Mathematically, this mechanism is 
closely related to the skewed varicose instability in that it corresponds to finite 
values of both b and d in the representation (2.9) of the disturbance field. In contrast 
to the neutral disturbances of the skewed varicose type which correspond to the 
limit d ,  b-t  0 with finite ratio b l d ,  the Kiippers-Lortz stability boundary corresponds 
to disturbances with finite values of b and d ,  such that b2+ ( ~ - d ) ~  assumes a value 
in the neighbourhood ofa:. Another difference between the two instability mechanisms 
besides the fact that the Kuppers-Lortz instability occurs only for finite rotation 
rates is that the latter instability becomes independent of the Prandtl number P as 
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P tends to infinity, while the skewed varicose instability disappears for both high and 
low Prandtl numbers. 

The skewed varicose and the Kuppers-Lortz instabilities are, in general, obtained 
from disturbances for which the sum of the index h and the index v is an even integer. 
It is evident from the representation (2.9) that the same instabilities occur for disturb- 
ances with h + v = odd integers if d is replaced by a - d. The numerical computations 
exhibit this invariance property within the accuracy expected for a finite value of 
the truncation parameter N .  Actually, d could be replaced by na + d, where n is an 
arbitrary integer, without changing the stability problem, but the numerical results 
are closely similar only for n = 0 and n = - 1 unless the truncation parameter N is 
increased beyond the values of 6 or 8 usually employed. The case of h + Y = even 
appears to give the best approximation because d is usually smaller than a: - d. 

Whenever possible, the calculations of the stability boundary for the onset of a 
certain instability have been continued into regions of the parameter space where 
steady convection rolls are unstable with respect to another instability and thus have 
been replaced by a three-dimensional convection flow. Although the mathematical 
results do not correspond to a physically realizable situation in this case, experience 
has shown that often the three-dimensional form of convection bccomes unstable in a 
similar fashion as has been theoretically predicted for the two-dimensional solution. 
But because of the mathematical similarity of the Kupper-Lortz and the skewed 
varicose instabilities, it is not always possible to distinguish them in regions where one 
of them has a finite positive growth rate. Since the wavenumbers d and b for the skewed 
varicose instability of maximum growth shift rapidly from vanishingly small to finite 
values past the stability boundary, the local maximum of CT as a function of b and d 
corresponding to the Kuppers-Lortz instability may disappear on the shoulder of the 
maximum of the skewed varicose growth rate. This is actually happening to one of 
the branches of the Kupper-Lortz stability boundary shown in figure 10. Similar 
difficulties occur when the Kuppers-Lortz stability boundary intersects the zig-zag 
stability boundary in figure 10. Although the strongest growing zig-zag disturbance 
corresponds to d = 0, disturbances with d # 0 also exhibit positive growth rates once 
the stability boundary has been crossed. Thus they can no longer be clearly separated 
in the computations from the Kuppers-Lortz type disturbances. 

4.2, Stability boundaries 
Numerical solutions of the stability problem have been obtained primarily for the 
Prandtl numbers P = 7 and P = 0.71, corresponding to water and air at  room tem- 
peratures. Figure 10 displays the stability boundaries of steady convection rolls for 
P = 7, Q = 10. A comparison with the corresponding figure for P = 7, R = 0 (Busse 
& Clever 1979a) shows that the Rayleigh number for the onset of the skewed varicose 
instability is slightly lowered by the effects of rotation. But at  Q = 10 the Kuppers- 
Lortz instability has just overtaken the skewed varicose instability in representing 
the boundary of the stability domain of rolls bowards high Rayleigh numbers. A 
second branch of the Kuppers-Lortz instability together with the zig-zag instability 
describes the boundary of the stability domain towards small wavenumbers. At  
Q = 10, the two branches cross each other, but at  a somewhat larger value of R they 
join to form a single branch. This is evident from figure 11, which shows a much 
reduced stability domain for R = 15. The determination of the value of R at which 
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FIGURE 10. The stability region of steady convection rolls for Q = 10, P = 7. 
The lower dashed curve describes Rc(a). 
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FIGURE 11. The same as figure 10 for C2 = 15. 
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FIGURE 12. Stability region of st.eady convection rolls for R = 5, P = 0.71. The symbols and 
0 give accurate and approximate positions, respectively, of the stability boundary for the 
Kuppers-Lortz instability. 
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FIQURE 13. Stability boundaries for the skewed varicose (A) and the Ruppers-Lortz ( 0 )  
instabilities in the case ct = a, as a function of the Prandtl number for different values of R. 

the two branches join requires expensive computations which have not been under- 
taken. 

In the case P = 0.71, the skewed varicose, the Eckhaus, and the oscillatory in- 
stability describe the stability boundary for 51 = 5 in a similar way as they do for 
Q = 0 as shown in figure 12. At 51 = 10 the Kuppers-Lortz instability replaces the 
skewed varicose instability in determining the upper stability boundary. This is 
evident from figure 13, which indicates the critical Rayleigh number for the onset 
of both the skewed varicose and the Kiippers-Lortz instability as a function of the 
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FIGURE 14. Wavenumber d (left ordinate, solid curves) and angle x (right ordinate, dashed 
curves) of the Kuppers-Lortz instability as a function of P for different values of Cl in the owe 
a = a  0. 

Prandtl number for various values of Q. For Q = 10 the stability domain of steady 
rolls in the case P = 0.71 has become so small that an exploration of the full stability 
boundary appeared to be of little interest. For slightly lowe: Prandtl numbers all 
steady two-dimensional solutions are unstable at Q = 10. At Q = 15 stable rolls can 
exist only for P > 1 and, for Q 2 27, rolls are unstable for all Prandtl numbers in 
agreement with the stability boundary Qc = 27.39 for P = 00 determined by Kiippers 
(1970, and personal communication) in the small amplitude limit. 

The Kiippers-Lortz type disturbances assume the form of parallel rolls enclosing 
the angle x = tan-l [b/(a - d ) ] ,  with the steady rolls. This angle and the wavenumber 
E = [b2 + (a - characterize the Kuppers-Lortz instability and have been plotted 
for this reason in figure 14 as function of the Prandtl number. The three curves for 
both x and a correspond to the three solid curves of figure 13. But the accuracy of the 
curves of figure 14 is much lower than in the other figures, since special computations 
for the accurate determination of b and d have not been made and either wavenumber 
may differ from its exact value by several per cent. Since the growth rate assumes a 
maximum a t  the critical values of b and d,  the accuracy of the computations of the 
stability boundary is not affected in first order. Figure 14 indicates that the wave- 
number 15 differs little from the value a, of the steady solution. For low values of P 
and SZ the variations of & become more pronounced, a behaviour which is also shown 
by the angle x. As Q increases, x approaches a value in the neighbourhood of 58", 
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which is the angle found by Kiippers & Lortz (1969) in their analysis for stress-free 
boundaries and P = 00. 

Figure 14 shows the variations of di and x only in the case when a = a,. For other 
values of a the results for d and x are not much different, except that x approaches 
angles near 90" at the lower part of the Kiippers-Lortz stability boundary for a > a, 
shown in figure 10. The value of & stays close to a, throughout the stability boundary. 

5. Discussion 
The analysis of this paper has confirmed and extended the result of Kuppers & 

Lortz (1969) that all steady small amplitude solutions are unstable when the rotation 
rate is sufficiently large. This poses a problem which has implications for the general 
theory of hydrodynamic instability and turbulence. Since oscillatory forms of con- 
vection do not exist for P > 1,  the puzzling question arises of which form of convection 
is physically realized. An answer to this question can be obtained when the full time- 
dependent three-dimensional problem posed by equations (2.1) is solved. Using a 
three-mode approximation in the limit of small amplitudes, time-dependent solutions 
have been obtained in a recent paper (Busse & Clever 19783). Unpublished results 
with up to 60 modes describing the horizontal pattern of convection have led to 
essentially the same results. 

Starting with a two-dimensional solution of the stationary problem and a set of 
small amplitude disturbance fields, the Kiippers-Lortz instability develops as pre- 
dicted by the linear theory. In  the particular case considered by Busse & Clever 
(19793) a disturbance in the form of rolls enclosing an angle of 60" with the given 
rolls grows and finally replaces the original roll solution. At this point a new disturb- 
ance in the form of rolls enclosing an angle of 120" with the direction of the original 
rolls starts to grow. Thus the process of instability is repeated in a cyclic fashion. The 
results show the unrealistic feature that the time from one cycle to the next increases 
without bound since the disturbances start growing from decreasing amplitudes. To 
represent the role of experimental noise in providing a constant level for the initial 
amplitudes of disturbances, a lower bound for the amplitudes of modes was intro- 
duced in a second series of computations. This leads to periodic solutions in the form of 
rolls that change their direction by 60' after each third of the full cycle. Consideration 
of the statistical nature of the experimental noise will lead to quasi-periodic solutions 
in the statistical mean. Convection in a rotating layer thus represents a particularly 
simple realization of a turbulent fluid system in that statistical properties govern the 
time dependence of the convection flow a t  all times. 

The above picture is basically confirmed by the experimental observations being 
carried out presently at UCLA (Ph.D. research project of K. E. Heikes). Earlier 
experimental observations by Rossby (1969) and Krishnamurti (1971) were done at  
Rayleigh numbers well above the critical value for onset of convection and indicated 
a transition from two-dimensional rolls to a three-dimensional cellular pattern of 
convection. Thus there appears to exist another stability boundary which describes 
the minimum Rayleigh number for which a cellular form of convection can be realized. 
Because the Rayleigh numbers of interest correspond to a few times the critical 
value, three-dimensional numerical computations appear to be feasible, but a syste- 
matic approach to the problem has not yet been undertaken. Some examples of 
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three-dimensional convection in a rotating system have been computed by Somerville & 
Lipps (1973) using a finite difference scheme. They were able to explain the non- 
monotone dependence of the heat transport on the rotation rate owing to the change 
of the wavelength of convection rolls, and they demonstrated that a three-dimensional 
cellular form of convection is preferred a t  high Rayleigh numbers. A further numerical 
exploration of three-dimensional convection in a rotating system would be of great 
interest in order to confirm the hypothesized additional stability boundary and to 
gain a better understanding of the nature of the cellular form of convection. 

Because of the sparsity of quantitative experimental results, a comparison between 
theoretical predictions and observations is not attempted in this paper. The only 
published measurements of the parameters for the onset of the Kuppers-Lortz 
instability are those by Krishnamurti (1971) .  At Rayleigh numbers of 4-7 times the 
critical value, the theoretical results agree with the experimental data, but, a t  lower 
Rayleigh numbers, Krishnamurti's graph suggests that the onset of the instability 
becomes independent of the Rayleigh number, while the results displayed in figure 9, 
together with those of Kuppers (1970), indicate a continuing increase of the critical 
value of Q with decreasing R. I n  the new experimental study of K.  E. Heikes, men- 
tioned above, this discrepancy will be investigated in detail. 

The financial support of the NSF Atmospheric Sciences Section is gratefully 
acknowledged. 

REFERENCES 

BTJSSE, F. H. 1967a The stability of finite amplitude cellular convection and its relation to an 
extremum principle. J .  Fluid Mech. 30, 625-649. 

BUSSE, F. H. 1967 b On the stability of two-dimensional convection in a layer heated from be- 
low. J .  Math. Phys. 46, 140-150. 

BTJSSE, F. H. 1972 The oscillatory instability of convection rolls in a low Prandtl number fluid. 
J .  Fluid Mech. 52, 97-112. 

BUSSE, F. H. & CLEVER, It. M. 1979a Instabilities of convection rolls in a fluid of moderate 
Prandtl number. J .  Fluid Mech. 91, 319-335. 

BTJSSE, F. H. & CLEVER, R. M. 1979 b Nonstationary convection in a rotating system. In Recent 
Developments in Theoretical and Experimental Fluid Mechanica - Compressible and Incorn- 
pressible Flows (ed. U. Muller, K. G. Roesner & B. Schmidt), pp. 376-385. Springer. 

BTJSSE, F. H. & WHITEHEAD, J.  A. 1971 Instabilities of convection rolls in a high Prandtl num- 
ber fluid. J .  Fluid Mech. 47, 305-320. 

BTJSSE, F. H. & WHITEHEAD, J. A. 1974 Oscillatory and collective instabilities in large Prandtl 
number convection. J .  Fluid Mech. 66, 67-79. 

CHANDRASEXHAR, S. Hydrodynamic and Hydromagnetic Stability. Oxford : Clarendon 
Press. 

CLEVER, R. M. & BTJSSE, F. H. 1974 Transition to time dependent convection. J .  Fluid Mech. 

CLEVER, R. M. & BUSSE, F. H. 1977 Instabilities of longitudinal convection rolls in an inclined 
layer. J .  Fluid Mech. 81, 107-127. 

CLEVER, R. M. & BUSSE, F. H. 1978 Large wavelength convection rolls in low Prandtl number 
fluids. 2. angew. Math. Phys. 29, 711-714. 

HART, J. E. 1971 Transition to a wavy vortex regime in convective flow between inclined plates. 
J .  Fluid Mech. 48, 265-271. 

KOSCHMIEDER, E. L. 1967 On convection on a uniformly heated rotating plane. Bedr. Phy8. 
Atmosph. 40, 215-225. 

196 1 

65, 625-645. 



Convection in a horizontal rotating fluid layer 627 

KRISHNAMURTI, R. 1971 On the transition to turbulent convection. 8th Symp. o n  Naval Hydro- 

KUPPERS, G. 1970 The stability of steady finite amplitude convection in a rotating fluid layer. 

KUPPERS, G. & LORTZ, D. 1969 Transition from laminar convection to thermal turbulence in a 
rotating fluid layer. J .  Fluid Mech. 35, 609-620, 

ROSSBY, H. T. 1969 A study of BBnard convection with and without rotation. J .  Fluid Mech. 

SCHLUTER, A., LORTZ, D. & BUSSE, F. H. 1965 On the stability of steady finite amplitude con- 
vection. J .  Fluid Mech. 23, 129-144. 

SOMERVILLE, R. C. J. 1971 BBnard convection in a rotating fluid. Cfeophys. Fluid Dyn. 2, 247- 
262. 

SOMERVILLE, R. C. J. & LIPPS, F. B. 1973 A numerical study in three space dimensions of BBnard 
convection in a rotating fluid. J .  Atmos. Sci. 30, 590-596. 

VERONIS, G. 1966 Motions at subcritical values of the Rayleigh number in a rotating fluid. J .  
Fluid Mech. 24, 645-554. 

VERONIS, G. 1968 Large-amplitude BBnard convection in a rotating fluid. J .  Fluid Mech. 31, 

dyn., rep. ARC-179, pp. 289-310. Office of Naval Research. 

Phys. Lett. A 32, 7-8. 

36,309-335. 

113-139. 


